Linear algebra

New to Plotly?

Plotly's Python library is free and open source! Get started by dowloading the client and reading the primer.
You can set up Plotly to work in online or offline mode, or in jupyter notebooks.
We also have a quick-reference cheatsheet (new!) to help you get started!

Imports

The tutorial below imports NumPy, Pandas, and SciPy.

import plotly.plotly as py
import plotly.graph_objs as go
from plotly.tools import FigureFactory as FF

import numpy as np
import pandas as pd
import scipy

Add Two Matrices

A Matrix is a 2D array that stores real or complex numbers. A Real Matrix is one such that all its elements $r$ belong to $\mathbb{R}$. Likewise, a Complex Matrix has entries $c$ in $\mathbb{C}$.

matrix1 = np.matrix(
    [[0, 4],
     [2, 0]]
)

matrix2 = np.matrix(
    [[-1, 2],
     [1, -2]]
)

matrix_sum = matrix1 + matrix2

colorscale = [[0, '#EAEFC4'], [1, '#9BDF46']]
font=['#000000', '#000000']

table = FF.create_annotated_heatmap(matrix_sum.tolist(), colorscale=colorscale, font_colors=font)
py.iplot(table, filename='matrix-sum')

Multiply Two Matrices

How to find the product of two matrices

matrix1 = np.matrix(
    [[1, 4],
     [2, 0]]
)

matrix2 = np.matrix(
    [[-1, 2],
     [1, -2]]
)

matrix_prod = matrix1 * matrix2

colorscale = [[0, '#F1FFD9'], [1, '#8BDBF5']]
font=['#000000', '#000000']

table = FF.create_annotated_heatmap(matrix_prod.tolist(), colorscale=colorscale, font_colors=font)
py.iplot(table, filename='matrix-prod')

Solve Matrix Equation

How to find the solution of $AX=B$

A = np.matrix(
    [[1, 4],
     [2, 0]]
)

B = np.matrix(
    [[-1, 2],
     [1, -2]]
)

X = np.linalg.solve(A, B)

colorscale = [[0, '#497285'], [1, '#DFEBED']]
font=['#000000', '#000000']

table = FF.create_annotated_heatmap(X.tolist(), colorscale=colorscale, font_colors=font)
py.iplot(table, filename='matrix-eq')

Find the Determinant

matrix = np.matrix(
    [[1, 4],
     [2, 0]]
)

det = np.linalg.det(matrix)
det

Find the Inverse

matrix = np.matrix(
    [[1, 4],
     [2, 0]]
)

inverse = np.linalg.inv(matrix)

colorscale = [[0, '#F1FAFB'], [1, '#A0E4F1']]
font=['#000000', '#000000']

table = FF.create_annotated_heatmap(inverse.tolist(), colorscale=colorscale, font_colors=font)
py.iplot(table, filename='inverse')

Find Eigenvalues

matrix = np.matrix(
    [[1, 4],
     [2, 0]]
)

eigvals = np.linalg.eigvals(matrix)
print("The eignevalues are %f and %f") %(eigvals[0], eigvals[1])

Find SVD

How to find the Singular Value Decomposition of a matrix, i.e. break up a matrix into the product of three matrices: $U$, $\Sigma$, $V^*$

matrix = np.matrix(
    [[1, 4],
     [2, 0]]
)

svd = np.linalg.svd(matrix)

u = svd[0]
sigma = svd[1]
v = svd[2]

u = u.tolist()
sigma = sigma.tolist()
v = v.tolist()

colorscale = [[0, '#111111'],[1, '#222222']]
font=['#ffffff', '#ffffff']

matrix_prod = [
    ['$U$', '', '$\Sigma$', '$V^*$', ''],
    [u[0][0], u[0][1], sigma[0], v[0][0], v[0][1]],
    [u[1][0], u[1][1], sigma[1], v[1][0], v[1][1]]
]

table = FF.create_table(matrix_prod)
py.iplot(table, filename='svd')
from IPython.display import display, HTML

display(HTML('<link href="//fonts.googleapis.com/css?family=Open+Sans:600,400,300,200|Inconsolata|Ubuntu+Mono:400,700" rel="stylesheet" type="text/css" />'))
display(HTML('<link rel="stylesheet" type="text/css" href="http://help.plot.ly/documentation/all_static/css/ipython-notebook-custom.css">'))

! pip install git+https://github.com/plotly/publisher.git --upgrade
import publisher
publisher.publish(
    'python_Linear_Algebra.ipynb', 'python/linear-algebra/', 'Linear Algebra | plotly',
    'Learn how to perform several operations on matrices including inverse, eigenvalues, and determinents',
    title='Linear Algebra in Python. | plotly',
    name='Linear Algebra',
    language='python',
    page_type='example_index', has_thumbnail='false', display_as='mathematics', order=10,
    ipynb= '~notebook_demo/104')
Back to top