Heatmaps
Heatmap with plotly.express
and px.imshow
¶
Plotly Express is the easy-to-use, high-level interface to Plotly, which operates on a variety of types of data and produces easy-to-style figures. With px.imshow
, each value of the input array or data frame is represented as a heatmap pixel.
For more examples using px.imshow
, see the tutorial on displaying image data with plotly.
import plotly.express as px
fig = px.imshow([[1, 20, 30],
[20, 1, 60],
[30, 60, 1]])
fig.show()
import plotly.express as px
df = px.data.medals_wide(indexed=True)
fig = px.imshow(df)
fig.show()
Heatmaps in Dash¶
Dash is the best way to build analytical apps in Python using Plotly figures. To run the app below, run pip install dash
, click "Download" to get the code and run python app.py
.
Get started with the official Dash docs and learn how to effortlessly style & deploy apps like this with Dash Enterprise.
```python hide_code=true from IPython.display import IFrame snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/' IFrame(snippet_url + 'heatmaps', width='100%', height=630)
### Customizing the axes and labels on a heatmap
You can use the `x`, `y` and `labels` arguments to customize the display of a heatmap, and use `.update_xaxes()` to move the x axis tick labels to the top:
```python
import plotly.express as px
data=[[1, 25, 30, 50, 1], [20, 1, 60, 80, 30], [30, 60, 1, 5, 20]]
fig = px.imshow(data,
labels=dict(x="Day of Week", y="Time of Day", color="Productivity"),
x=['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday'],
y=['Morning', 'Afternoon', 'Evening']
)
fig.update_xaxes(side="top")
fig.show()
Basic Heatmap with plotly.graph_objects
¶
If Plotly Express does not provide a good starting point, it is also possible to use the more generic go.Heatmap
class from plotly.graph_objects
.
import plotly.graph_objects as go
fig = go.Figure(data=go.Heatmap(
z=[[1, 20, 30],
[20, 1, 60],
[30, 60, 1]]))
fig.show()
Heatmap with Categorical Axis Labels¶
In this example we also show how to ignore hovertext when we have missing values in the data by setting the hoverongaps to False.
import plotly.graph_objects as go
fig = go.Figure(data=go.Heatmap(
z=[[1, None, 30, 50, 1], [20, 1, 60, 80, 30], [30, 60, 1, -10, 20]],
x=['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday'],
y=['Morning', 'Afternoon', 'Evening'],
hoverongaps = False))
fig.show()
Heatmap with Unequal Block Sizes¶
import plotly.graph_objects as go
import numpy as np
# Build the rectangles as a heatmap
# specify the edges of the heatmap squares
phi = (1 + np.sqrt(5) )/2. # golden ratio
xe = [0, 1, 1+(1/(phi**4)), 1+(1/(phi**3)), phi]
ye = [0, 1/(phi**3), 1/phi**3+1/phi**4, 1/(phi**2), 1]
z = [ [13,3,3,5],
[13,2,1,5],
[13,10,11,12],
[13,8,8,8]
]
fig = go.Figure(data=go.Heatmap(
x = np.sort(xe),
y = np.sort(ye),
z = z,
type = 'heatmap',
colorscale = 'Viridis'))
# Add spiral line plot
def spiral(th):
a = 1.120529
b = 0.306349
r = a*np.exp(-b*th)
return (r*np.cos(th), r*np.sin(th))
theta = np.linspace(-np.pi/13,4*np.pi,1000); # angle
(x,y) = spiral(theta)
fig.add_trace(go.Scatter(x= -x+x[0], y= y-y[0],
line =dict(color='white',width=3)))
axis_template = dict(range = [0,1.6], autorange = False,
showgrid = False, zeroline = False,
linecolor = 'black', showticklabels = False,
ticks = '' )
fig.update_layout(margin = dict(t=200,r=200,b=200,l=200),
xaxis = axis_template,
yaxis = axis_template,
showlegend = False,
width = 700, height = 700,
autosize = False )
fig.show()
Heatmap with Datetime Axis¶
import plotly.graph_objects as go
import datetime
import numpy as np
np.random.seed(1)
programmers = ['Alex','Nicole','Sara','Etienne','Chelsea','Jody','Marianne']
base = datetime.datetime.today()
dates = base - np.arange(180) * datetime.timedelta(days=1)
z = np.random.poisson(size=(len(programmers), len(dates)))
fig = go.Figure(data=go.Heatmap(
z=z,
x=dates,
y=programmers,
colorscale='Viridis'))
fig.update_layout(
title='GitHub commits per day',
xaxis_nticks=36)
fig.show()
Heatmap and datashader¶
Arrays of rasterized values build by datashader can be visualized using plotly's heatmaps, as shown in the plotly and datashader tutorial.
Reference¶
See function reference for px.(imshow)
or https://plotly.com/python/reference/heatmap/ for more information and chart attribute options!