Candlestick charts
The candlestick chart is a style of financial chart describing open, high, low and close for a given x
coordinate (most likely
time). The boxes represent the spread between the open
and close
values and the lines represent the spread between the low
and high
values. Sample points where the close value is higher (lower) then the open value are called increasing (decreasing). By default, increasing candles are drawn in green whereas decreasing are drawn in red.
Simple Candlestick with Pandas¶
import plotly.graph_objects as go
import pandas as pd
from datetime import datetime
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv')
fig = go.Figure(data=[go.Candlestick(x=df['Date'],
open=df['AAPL.Open'],
high=df['AAPL.High'],
low=df['AAPL.Low'],
close=df['AAPL.Close'])])
fig.show()
Candlestick without Rangeslider¶
import plotly.graph_objects as go
import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv')
fig = go.Figure(data=[go.Candlestick(x=df['Date'],
open=df['AAPL.Open'], high=df['AAPL.High'],
low=df['AAPL.Low'], close=df['AAPL.Close'])
])
fig.update_layout(xaxis_rangeslider_visible=False)
fig.show()
Candlestick in Dash¶
Dash is the best way to build analytical apps in Python using Plotly figures. To run the app below, run pip install dash
, click "Download" to get the code and run python app.py
.
Get started with the official Dash docs and learn how to effortlessly style & deploy apps like this with Dash Enterprise.
```python hide_code=true from IPython.display import IFrame snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/' IFrame(snippet_url + 'candlestick-charts', width='100%', height=630)
#### Adding Customized Text and Annotations
```python
import plotly.graph_objects as go
import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv')
fig = go.Figure(data=[go.Candlestick(x=df['Date'],
open=df['AAPL.Open'], high=df['AAPL.High'],
low=df['AAPL.Low'], close=df['AAPL.Close'])
])
fig.update_layout(
title='The Great Recession',
yaxis_title='AAPL Stock',
shapes = [dict(
x0='2016-12-09', x1='2016-12-09', y0=0, y1=1, xref='x', yref='paper',
line_width=2)],
annotations=[dict(
x='2016-12-09', y=0.05, xref='x', yref='paper',
showarrow=False, xanchor='left', text='Increase Period Begins')]
)
fig.show()
Custom Candlestick Colors¶
import plotly.graph_objects as go
import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv')
fig = go.Figure(data=[go.Candlestick(
x=df['Date'],
open=df['AAPL.Open'], high=df['AAPL.High'],
low=df['AAPL.Low'], close=df['AAPL.Close'],
increasing_line_color= 'cyan', decreasing_line_color= 'gray'
)])
fig.show()
Simple Example with datetime
Objects¶
import plotly.graph_objects as go
from datetime import datetime
open_data = [33.0, 33.3, 33.5, 33.0, 34.1]
high_data = [33.1, 33.3, 33.6, 33.2, 34.8]
low_data = [32.7, 32.7, 32.8, 32.6, 32.8]
close_data = [33.0, 32.9, 33.3, 33.1, 33.1]
dates = [datetime(year=2013, month=10, day=10),
datetime(year=2013, month=11, day=10),
datetime(year=2013, month=12, day=10),
datetime(year=2014, month=1, day=10),
datetime(year=2014, month=2, day=10)]
fig = go.Figure(data=[go.Candlestick(x=dates,
open=open_data, high=high_data,
low=low_data, close=close_data)])
fig.show()
Reference¶
For more information on candlestick attributes, see: https://plotly.com/python/reference/candlestick/